skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Quentin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land–sea margin. Therefore, these habitat‐forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea‐level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water‐quality degradation that may alter reef distributions, functions, and services. To explore decadal‐scale oyster–reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013–2015 that had previously been studied during 1955–1956. We also coalesced historical NRE reef distribution (1880s–2015), salinity (1913–2015), and water‐quality‐driven shellfish closure boundary (1970s–2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60–120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster–reef communities have become less distinct across the estuary, manifest by 20%–27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster–reef communities tended to cluster around a euhaline, intertidal‐reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef‐destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up‐estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up‐estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on harvestable subtidal oysters (reduced from a 4.5‐km to a 0.75‐km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how “squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change. 
    more » « less
  2. Abstract Ultrasound is a safe, noninvasive diagnostic technique used to measure internal structures such as tissues, organs, and arterial and venous blood flow. Skin‐mounted wearable ultrasound devices can enable long‐term continuous monitoring of patients to provide solutions to critical healthcare needs. However, stretchable ultrasound devices that are composed of ultrasonic transducers embedded in an elastomer matrix are incompatible with existing rigid acoustic matching layers, leading to reduced energy transmission and reduced imaging resolution. Here, a systematic study of soft composites with liquid metal (LM) fillers dispersed in elastomers reveals key strategies to tune the acoustic impedance of soft materials. Experiments supported by theoretical models demonstrate that the increase in acoustic impedance is primarily driven by the increase in density with negligible changes to the speed of sound through the material. By controlling the volume loading and particle size of the LM fillers, a material is created that achieves a high acoustic impedance 4.8 Mrayl, (> 440% increase over the polymer matrix) with low modulus (< 1 MPa) and high stretchability (> 100% strain). When the device is mechanically strained, a small decrease is observed in acoustic impedance (< 15%) with negligible decrease in sound transmittance and impact on attenuation for all droplet sizes. The stretchable acoustic matching layer is then integrated with a wearable ultrasound device and the ability to measure motion is demonstrated using a phantom model as is performed in Doppler ultrasound. 
    more » « less